Fusion of Difference Images for Change Detection
ثبت نشده
چکیده
The Land use/ Land cover change in urban areas and the difference of the earth surface after the flood can be detected from remote sensing images by performing image differencing algorithms. Although many algorithms were proposed to generate difference images, the results are inconsistent. In order to integrate the merits of difference algorithms, fusion techniques are used to merge multiple difference images. The image fusion algorithms applied here are based on Principal Component Analysis and Discrete Wavelet Transform. Principal Component Analysis is the unsupervised technique, the change is guaranteed to be preserved in the major component images. In Wavelet based method, image fusion is performed at the pixel level and the details from source images can be reserved at various scales. The algorithms are implemented on the satellite images and results are presented.
منابع مشابه
Change Detection in Urban Area Using Decision Level Fusion of Change Maps Extracted from Optic and SAR Images
The last few decades witnessed high urban growth rates in many countries. Urban growth can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The purpose of this research is to detect the urban change that is used for urban planning. Change detection using remote sensing images can be classified into three methods: algebra-based, transfor...
متن کاملChange Detection in Satellite Images Using Contourlet Transform and RFLICM Clustering
An approach based on contourlet image fusion and reformulated fuzzy clustering for change detection in satellite images is introduced in this paper. In this approach fusion of images is used to produce difference image from log ratio and mean ratio images. An optimal difference image should retain the unchanged areas and show the changed areas. So contourlet image fusion is used to generate the...
متن کاملCombining of Magnitude and Direction of Change Indices to Unsupervised Change Detection in Multitemporal Multispectral Remote Sensing Images
In remote sensing, image-based change detection techniques, analyze two images acquired over the same area at different times t1 and t2 to identify the changes occurred on the Earth's surface. Change detection approaches are mainly categorized as supervised and unsupervised. Generating the change index is a key step for change detection in multi-temporal remote sensing images. Unsupervised chan...
متن کاملImage Fusion and Fuzzy Clustering based Change Detection in SAR Images
Change detection in remote sensing images becomes more and more important for the last few decades, among them change detection in Synthetic Aperture Radar (SAR) images are having some more difficulties than optical ones due to the fact that SAR images suffer from the presence of the speckle noise. This paper presents unsupervised change detection in multi-temporal Synthetic Aperture Radar (SAR...
متن کاملChange detection from satellite images based on optimal asymmetric thresholding the difference image
As a process to detect changes in land cover by using multi-temporal satellite images, change detection is one of the practical subjects in field of remote sensing. Any progress on this issue increase the accuracy of results as well as facilitating and accelerating the analysis of multi-temporal data and reducing the cost of producing geospatial information. In this study, an unsupervised chang...
متن کاملChange Detection in Synthetic Aperture Radar Images Using Contourlet Based Fusion and Kernel K-Means Clustering
Change detection algorithms play a vital role in overseeing the transformations on the earth surface. Unsupervised change detection has an indispensable role in an immense range of applications like remote sensing, motion detection, environmental monitoring, medical diagnosis, damage assessment, agricultural surveys, surveillance etc. In this paper, a novel method for unsupervised change detect...
متن کامل